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On embedding a microarchitectural design language within Haskell

John Launchbury Jeffrey R. Lewis Byron Cook

Oregon Graduate Institute of Science & Technology

Abstract [18], the lazy state monad [21], and unsafePerformI0 [19].
This paper contains no deep theory, but rather a dose of

Based on our experience with modelling and verifying mi- measured introspection.
croarchitectural designs within Haskell, this paper exam- The remainder of this paper is organized as follows: In
ines our use of Haskell as host for an embedded language. Section 2 we provide the motivation for our work in microar-
In particular, we highlight our use of Haskell's lazy lists, chitectural modelling. In Section 3 we introduce Hawk and
type classes, lazy state monad, and unsafePerformI0, and show how we use lazy lists to model wires. In Sections 4,
point to several areas where Haskell could be improved in 5, and 6, we show how type classes, the lazy state monad,
the future. We end with an example of a benefit gained and unsafePerformI0, respectively, are put to use in Hawk,
by bringing the functional perspective to microarchitectural and in Section 7 we describe an application that makes use
modelling. of all four features. In Section 8 we outline where Haskell

has constrained us, and discuss future directions. Finally,
1 Introduction the paper closes with an example of some new insights into

microarchitectures that arose as a consequence of the func-
There are many ways to design and implement a language. tional perspective.
Landin's vision of the next 700 programming languages [20],
for example, was to build domain-specific vocabularies on 2 Building a Microarchitectural Description Lan-
top of a generic language substrate. In the verification com- guage
munity, this is known as a shallow embedding of one language
or logic into another. In effect, every abstract data type de- Contemporary superscalar microarchitectures employ
fines a language. Admittedly, most abstract data types by tremendously aggressive strategies to mitigate dependencies
themselves make impoverished languages, but when inter- and memory latency. Their complexity taxes current design
esting combinators are provided, the language becomes rich techniques to the limit. The trend continues as the size of
and vibrant in its own right. This explains the continuing design teams grows exponentially with each new generation
popularity of combinator libraries, from the time of Landin of chip.
until now. To gain an appreciation for the complexity of modern

The animation language/library Fran is a beautiful ex- microarchitectures, take as an example the model of an
ample [11, 10]. Fran provides two families of abstract types instruction reorder buffer which occurs frequently in out-
in Haskell: behaviors and events. To construct a term of of-order microprocessors like the Pentium III. The purpose
type Behavior Int, for example, is to write a sentence in of the instruction reorder buffer is to allow instructions to
the Fran language, using Fran primitives and Fran combi- be executed at the earliest possible moment. It does this
nators. To build complex Fran entities, however, the full by maintaining a pool of instructions, so that it can dy-
power of Haskell can be brought to bear. Fran objects are namically determine which of them are eligible for execu-
just another abstract data type. tion by keeping track of whether their operands have been

So how good is Haskell as a host for embedded languages? computed. Furthermore, instructions are inf-roduced spec-
This is one of those questions that can only be answered ulatively, based upon numerous successive branch predic-
through experience, and is precisely where we see the con- tions. Consequently, instructions that have previously been
tribution of this paper. We describe our use of Haskell as scheduled and executed must sometimes be rescinded when
a host for a microarchitectural modelling language, calling a branch is discovered to have been mispredicted. Thus the
attention to the aspects of Haskell that helped us, those that instruction reorder buffer must keep track of instructions up
hindered us, and the features we wish we had. In particu- to the point that they can either be retired (committed) or
lax, we highlight our use of Haskell's lazy lists, type classes flushed. Since some instructions following a branch may al-

ready have been executed when a branch misprediction is
discovered, register contents are also affected. At a branch
misprediction, register mapping tables must be modified to
invalidate the contents of registers that contain results of
rescinded instructions. The contents of registers that are
possibly live must be preserved until after the branch has



well by Okasaki and Wadler in their respective methods for placed in Register 4, that is, "r4<-r2+rl". The initial trans-
adding laziness to Standard ML [29, 37]. We can summarize action corresponding to this would lack values for each of
the principle as follows: (mutually) recursive definitions of this registers, i.e. "(r4._)<-(r2,._)+(r1,_)". As the trans-
an abstract data type require lazy definitions. This princi- action passes through the register file, its operand values are
ple holds even if the abstract datatype is implemented by filled in: "(r4,_)<-(r2,4)+(r1,4)". After the ALU, the
a function so that no lazy data structures are actually in- computed result is also filled in: "(r4,8)<-(r2,4)+(rl,4)",
volved. and now the transaction is ready to go back to the register

One item that is not missing from the signal definition file to store the result.
is a way to observe a list by taking its head or tail. This Hawk provides a library of functions for creating and
is intentional. A circuit that was specified to take the tall modifying transactions. For example, bypass takes two
of a list would be asking for a circuit to perform lookahead transactions and builds a new transaction where the val-
in time. We do allow signals to be viewed as lists for the ues from the destination operands of the first transaction
purpose of viewing simulation results, but this operation is are forwarded to the source operands of the second. If i is
only provided for use at the top-level, the transaction:

4 Microarchitectural Abstractions "Cr4.8) <- (r2.4) + Cr1.4)"

and j is the transaction:
Two of the goals of Hawk have been to build abstractions

that increase the concision of microarchitectural models [5], "r10 <- (r4,6) + (r1,4)"
and to facilitate the verification process [25]. For microar-
chitectural abstractions to be relevant, they must be ex- then bypass i j produces the transaction:

traordinarily flexible in the types that they operate over. "r10 <- Cr4,8) + (r1,4)"
Instruction sets differ in variety of details: size and type of
data, number and types of registers, and the instructions That is, bypass inserts i's more recent valuation of r4 into
themselves. Internally, machines may use other instruction the destination operand of j.
sets. For example, the AMD K6[33] implements the X86 The bypass function is an example of a local control oper-
instruction set, but uses a RISC instruction set within its ator. The control function it performs is selective forwarding
execution core. of newly computed results to other instruction transactions

We use type classes to facilitate the description of circuits that may otherwise contain stale information.
that operate over all instruction sets. For example, the type
of a primitive ALU might be: bypass (Word w, Register r) =>

Trans i r w -> Trans i r w -> Trans. i r w
alu :: (Instruction i, Word w) =>

(Signal i, Signal w, Signal w) -> Signal w By parameterizing over the instances of finite words and
registers, bypass can be used in many contexts. Within our

This way, alu can be used in an X86 model (where w is Pentium III-like microarchitectural model we use bypass on
set to 32-bit words and i to X86 instructions) or a 64-bit instructions with both concrete register references and vir-
RISC instruction set, like that of the Alpha. The Word class tual register references (which arise as a result of dynamic
is an extension of Haskell's Drum class that adds operators register renaming for the out-of-order core of the proces-
related to word size, signedness, etc. The Instruction class sor). Both types of register are instances of the type class
captures the common elements between instruction sets. Register. In our Merced-like model [6], we use the same

With common architectural characteristics captured by bypass with IA-64 instructions.
type classes, we are then able to build abstractions that help
organize microarchitectural models. For example, transac- 5 Lazy State: Using State-Based Components
tions [2, 27] are a simple yet powerful grouping of control
and data. A transaction is a machine instruction grouped There has been debate in the Haskell community about the
together with its current evaluation state. This state might merits of laziness/strictness within the state monad. In this
include: section we describe an application where lazy state is just

"* Operand and result values, right [21].
Some microarchitectural components, such as register

"* A flag indicating that the instruction has caused an files, are more naturally (and efficiently) presented as state
exception. transition systems than as list transformers. For example,

imagine modelling a primitive register file as an array which,
"* A predicted jump target, if the instruction is a branch. on each clock tick, is both written to and read from. Here it

It seems a trivial thing to do, when building multiple com- is, using the basic idiom of lazy state, done first with explicit

ponent values are so easy in functional languages, yet it had lazy-lists to show the recursion structure.

significant consequences. For example, we found that mi- regFile :: C(Addrw)] -> [Addr] -> [w]
croarchitectural models that utilize transactions can make regFile writes reads
decisions locally rather than with a separate control unit, = runST (
and to a large extent, definition of local control is far easier do { reg <- newSTArray (minAdd.r, maxAddr)
to get right than attempting the same task globally. (error "uninitialized")

To get a feel for transactions, consider the following ex- ; regLoop reg writes reads
ample. Suppose the instruction fetch unit issues an instruc- }
tion that Registers 1 and 2 are to be added and the result



regLoop :: STArray s Addr v -> 6 Use and Abuse of unsafePerformIO
[(Addr,w)] -> (Addr] -> ST s [w]

regLoop reg ((a,w):aws) (r:rs) When embedding a language, one often needs "language
= do { writeSTArray reg a w primitives" that provide good things but could not be de-

v <- readSTArray reg r fined directly. Fran for example, has a function:
vs <- regLoop reg aws rs importBitmap :: Filename -> Bitmap
return (v:vs)

} which imports a bitmap file and treats it as a pure value.
There are two basic approaches to defining this kind of

As with both versions of encapsulated state, the state primitive. The first is to write code in C, and add it as a new
within the scope of runST is completely hidden from the primitive in the run-time system of the host language. The
outside world. Thus as far as the rest of the program is alternative is to provide the host language with a generic,
concerned, reg is completely pure, as indicated by its type. though potentially unsafe, mechanism of writing new prim-
The encapsulation of the state is guaranteed by the type of itives, and to make clear what extra proof obligations arise
runST (23]. Inside the implementation of regFile, however, that make its use predictable.
the situation is quite different. The array writes are "imper- In this vein, most Haskell implementations provide
ative", a constant-time operation having effects immediately an implementor's function unsafePerformI0 : : 10 a -> a
visible to subsequent reads. which performs an 10 operation and then casts the result as

The semantics of lazy state is as follows. The monadic a pure value. The Fran function importBitmap, for example,
structure sequentializes the operations of the monad but is defined in this way. The action of reading a bitmap file is
forces nothing. When the result of the state thread is de- performed, and then unsafePerform.Il is used to treat the
manded (in this case, the output list of values), execution bitmap as a pure value.
proceeds to meet the demand, but in the order determined As its name suggests, unsalfePerformI0 is potentially un-
by the monadic sequentialization. Thus, while execution safe. By abusing it one can do all manner of bad things. But
proceeds by demand, some of that demand is transmitted under the alternative scenario of hacking the run-time sys-
through the state sequencer. As more and more of the re- tem in C, one can also do all manner of bad things. The
sult signal is demanded though execution of the rest of the question is, which is worse? Providing the extension mech-
Hawk model, so a larger and larger prefix of the sequence anism at the source language level avoids large classes of er-
of state instructions are executed. Laziness with respect to rors that could otherwise arise from mangling the run-time
later state operations is essential here: the computed value system, and works uniformly across many language imple-
v must be made available to the outside world before the mentations. Over the last few years, a fairly strong con-
recursive call to regLoop aws rs is performed. sensus has emerged that if extra primitives are needed they

To recast this in the context of Hawk abstract signals might as well be defined at source language level through a
is straightforward. Within the definition of signals, we in- judicious use of a mechanism like unsafePerformI0.
troduce a new family of functions liftST n, which are the However, because it does extend the primitive base
monadic map on signals. For example: of Haskell, there is a clear sense in which any use of

liftST2 :: (a -> b -ST s c) -> unsafePerformI0 means that the resulting program is no

Signal a -> Signal b -> ST s (Signal c) longer written in Haskell per se, but rather in some exten-
sion to Haskell. Thus, properties that apply to all Haskell

The corresponding Hawk definition of the register file is as programs, may cease to apply to programs written in poorly
follows: defined extensions. It is not just the delicate properties, like

parametricity for example, that are at risk, but even basic
reg :: Register r => properties like referential transparency and type safety. For

Signal (r,w) -> Signal r -> Signal w example, unsafePerforml0 is strong enough to allow the
reg writes reads definition of a new primitive function cast:

runST (
do { reg <- newSTArray (minReg, maxReg) cast :: a -> b

(error "uninitialized") cast x = let bot = bot

liftST2 (regFile reg) writes reads r = unsafePerformI0 (newIORef bot)
in unsafePerformIO

(do (writeIORef r x; readIORef r})

regFile ::Register r => STArray s Addr w -> The use of unsafePerformI0 resurrects the original ML-
(r,w) -> r -> ST s v reference problem. The reference r is unconstrained at cre-

regFile reg (a,w) r ation, and the use of unsafePerformIn allows it to be bound
* do { writeSTArray reg a v by a let-construct, and so has its type generalized. It can

'; readSTArray reg r store or retrieve values of any type. Thus there is no prob-
}" lem storing a value of type a nor of reading a value of type

In the use of liftST2 above, the state machine is executed b, even though precisely the same value will be written and
step by step, consuming its list input and generating its list read! Incidentally, avoiding exactly this problem (amongst

stepby tep cosumng is lst npu an genratng ts ist others) lead to the careful use of parametricity in the deft-
output on the way. In particular, the liftST construct does otion o the c u3].

not attempt to execute the state machine completely before nition of runST [23].

relesin th ouputlis. I isthi beavir w reuir ofthe All is not lost, however. There are many examples ofreleasing the output list. It is this behavior we require of the careful uses of unsa~fePerforml0 that e~xtend Haskell in ways

state monad and fortunately, though not officially a part of carel co nsist ent with 0 und e n d H as kell.inewayv

Haskell, most implementations provide it. entirely consistent with its underlying philosophy. We give
one below.



6.1 Observing Signals 2. When the reset line is high at the current clock cycle,

When using Hawk, we found that we often wanted to observe the output is zero.

the values flowing across a signal. Unfortunately, Haskell's In Hawk, we might express these properties as follows.
semantic purity makes this viewing rather difficult, as view- Assume that rO and ri are the values of the reset line at
ing a signal often implied recoding the model so that the time t and t + 1 respectively, and that n and m are the
stream we were interested in was available at the top level, corresponding integer outputs from the circuit.
As an alternative, we provide the function:

propCounter rO rl n m = prop-one && prop-two
probe :: Filename -> Signal a -> Signal a where

As far as Hawk-level models are concerned, a probe is simply prop-one = not ri ==> (n + I === m)

the identity function on signals. However, the external world proptwo = rO ==> (n = 0)

receives a different view. Probes are side-effecting, writing We would like to show that these properties hold for arbi-
values to a file, even though they apparently have a pure trary values of ro and ri, and for arbitrary values of the
type. Thus, probes cannot be defined within Haskell-proper. internal state element of the counter circuit. To do this,
Instead, they need to be introduced as a Haskell extension we will use symbolic values for rO and ri, and symbolically
through the use of unsafePerformIn . simulate the circuit.

probe name vals = The approach we take to symbolic simulation is aprob (wte name ) cs straightforward application of polymorphism and overload-
lift2 (write name) clock vals ing, given in more detail elsewhere [8]. We introduce a

write name tick val -- unsafePerformI datatype of symbolic expressions (variables and additionalwrit <- opele name t v sAfpenerforO term structure). For example, we have used the following
do { h <- openFile name AppendMode datatype for symbolic simulation of simple arithmetic cir-

;hPutStrLn h (show tick ++ ": +cuits.

show val)
hClose h data Symbo a -
return val Const a

I Var String
I Plus (Symbo a) (Symbo a)(clock is a stream that enumerates the natural numbers.) I Times (Symbo a) (Symbo a)

Notice that we are careful not to change the strictness of
the argument stream of probe. Each element of the list Sufficiently polymorphic functions that arise in a Hawk
is wrapped in an independent side-effecting closure which, model can be instantiated at new types and at the sym-
when evaluated, writes its value to the file required, and bolic type Symbo in particular. The catch is that some care
then returns the value. This definition makes essential use is required in making functions "sufficiently polymorphic".
of the strictness of the 10 monad, in contrast to the laziness In brief, the parts of the program that you wish to sym-
of the ST monad earlier. Without strictness, the final value bolically evaluate cannot use concrete types, because those
would simply be returned, with none of the effects having types must be able to be replaced by symbolic counterparts.
been performed.

Because the Hawk models do not depend on the contents 7.1 Symbolic Simulation in Haskell
of the fiestore, we can guarantee that a model is unchanged
by the addition of probe functions. In places, Haskell's prelude is remarkably amenable to sym-

We went much further than just writing the probe infor- bolic simulation. Take the Num class, for example. As al-
mation to a file. We used the commercial drawing package most every numeric operator is overloaded, so too are the
Visio to build a front end to Hawk. We can now draw dia- vast bulk of numeric expressions. Thus to symbolically ex-
grams in Visio and then, at the push of a button, generate ecute a numeric expression, all we have to do is declare an
a corresponding Hawk model containing one probe function instance of class Num over the Symbo type.
per wire on the diagram. During and after the execution
of the model, double-clicking on any wire causes the corre- instance Num a => Num (Symbo a) where ...
sponding probe file to be opened, displaying the contents Now any numeric expression is immediately symbolically ex-
of the wire. This provided an invaluable feedback tool for ecwtan ue rdebugin miroarhitctues.ecutable.
debugging microarchitectures. In other places Haskell's prelude is not so-amenable toIn summary, we found unsafePerformID to be a power- symbolic simulation. Booleans provide an excellent exam-
ful facility for building tools to observe but not affect the slic simuation Boole rns pn excellen e-microarchitectural models. ple. Comparison and conditional operations in Haskell's pre-

lude have booleans hardwired in place. The historical reason
is clear. Overloading in Haskell was introduced precisely be-

7 Verification in Hawk cause the designers of the language already had many differ-
ent versions of numbers that they wanted to add and multi-

We wanted Hawk to provide tools that can be used to for- ply (integer, rational, floating point, complex, etc.), but only
mally verify properties of microarchitectural models. Sup- one version of booleans: simple True and False. However,
pose, for example,that we want to prove the following prop- there are more varieties of booleans that we are now com-
erties about the resettable counter from Section 3: ing across, particularly in the realm of embedded languages.

1. When the reset line is low on the next clock cycle, the For example, Fran needs to be able to compare expression

outputnis the value at the current cycle plus 1; that vary with time, leading naturally to the concept of aoutput sboolean result that also varies with time. In our context we



want the boolean operations to apply to symbolic expres- We can use this definition directly in verification of the prop-
sions representing booleans. erty:

To capture the operations of both concrete and symbolic test
booleans we echo the development of the Num class, and de- BDD

fine a class Boolean, which makes all the boolean operators test propCounter rO rl n m

from the prelude abstract: where
a var "a" :: BDDVector8

class Boolean b where rO = var "rO" :: BDD
true :: b rl =var "r1"1 BDD
false :: b reset = rO 'delay' rl 'delay' false
(&&) :: b -> b -> b [n, m] = counter a reset 000 [0, 1]
(1 1) :: b -> b -> b where (000 is an operator for sampling a signal at the spec-
(==>) b -> b -> b ified times.) By evaluating test, we are proving that, for
not :: b -> b Boolean vectors of length 8, the counter circuit meets our

We also define a class Eql, which is similar to the standard specification. Using types more general than BDDVector8,
Eq class, except that it is also abstracted over equality's we can prove the properties for counters of arbitrary size.

result type. One of the unsatisfying aspects of this verification ex-
ample is that it was necessary to make the internal state

class Boolean b > Eql a b where of the counter an explicit parameter. Doing this in a
a -> a -> b complex model would entail passing around a lot of extra

parameters-just the sort of thing we'd like to avoid. Also,
Conditional expressions, too, must be abstract: in forcing the model to be explicit about its internal state,

class Mux c a where it undercuts one of the strengths of the signal transformer
model that sets it apart from state transformer models, mak-

mai : : c -> a -> a -> a ing it a sort of unwelcome hybrid. However, using ideas from

If the condition on which we branch is symbolic, it is clear Symbolic Trajectory Evaluation [15], we are currently work-
that the result must be symbolic as well. Hence there is a re- ing with symbolic domains that have a partial order struc-
lationship between the type of the conditional, and the type ture. Symbolic simulation proceeds by starting with initial
of the result-just the sort of thing that multi-parameter states set to bottom, with iteration of the model gradually
type classes express well. adding more information. The fit with lazy stream models

To capture the common usage of conditional expressions, looks very good indeed.
we make Bool an instance of Mux

instance Mux Bool a where 8 Where Haskell and Hawk Tangle

mux x y z = if x then y else z For our domain, Haskell has turned out to be an excellent

Of course, we also make signals of boolean-like things in- tool for experimenting with language design. However, in a

stances of the Mux class, few places, Haskell is not a perfect match. In this section we

We can now employ many implementations of Booleans. point to some of the hinderences that we have encountered.

In particular we can use binary decision diagrams (BDDs)
[4], which implement semantic equality between symbolic 8.1 Lazy Lists
boolean expressions in constant time. Using H/Direct [12] In some cases Haskell is a little too generous. Our preferred
and unsafePerformIO, we have imported the CMU BDD semantics for signals is that of truly infinite, or coinductive,
package into Haskell [7]. In the style of the Voss modelling lists-i.e., not that of finite, infinite, and partially defined
language [31], Hawk treats BDDs just like Booleans. But, lists, as in Haskell. Any feedback loop that did not include
thanks to type classes, a user can also choose not to use at least one delay should be rejected by Hawk as being ill-
BDDs, but some other instance of Boolean. defined-the corresponding hardware would generate more

smoke than data. Haskell, however, will stubbornly do its
7.2 Proving a Property best to make sense of even such ill-defined definitions. Could

We now have the infrastructure needed to verify our proper- Haskell be coerced to match our intended application better?

ties. Our strategy is to simulate the counter with symbolic We have constructed a shallow embeddingof Hawk in

values on the reset line for the first two ticks, and then test Isabelle [30], which is much less forgiving. In order to have

the desired property on the first two outputs. To ensure the Isabelle accept our recursive definitions we have had to de-

result applies at any stage of the execution we also need to velop a richer theory of induction over coinductive datatypes

be able to initialize the state element (the delay component) than previously available [24]. Using this theory, Isabelle is

of the counter by placing a symbolic value there as well. The able to accept all the valid Hawk definitions that we have

new definition of counter is as follows: thrown at it, while rejecting the invalid ones. It would be
useful if Haskell's type system could be extended to handle

counter :: (Num a, Boolean b) => this-perhaps using unpointed types [22] to express valid
a -> Signal b -> Signal a coinductive definitions.

counter init reset = out
where 8.2 Type Classes
next = delay init (liftl (+1) out)
out - mux reset (liftO 0) next For generality, the type representing an instruction set must

remain abstract. Consequently we cannot directly pattern



match on it. Instead, the operations of the Instruction that it allows us to take an existing executable model and
class provide predicates to identify common instructions verify properties of it, without changing the model at all.
such as nops, arithmetic ops, loads and stores and jumps. However, this does not work quite as well as it could be-

cause of limitations in the class system- Ideally, we would
class (Show i, Eq i) => Instruction i where like to instantiate the test expression above at different

isNoOp i ->Bool symbolic types. However, there is no good way to param-
isAddOp ± - Bool eterize test by the types in question, without resorting to
isSub~p i ->Bool unpleasantries like adding dummy arguments. The type of

... the data for counter is purely an intermediate value in the

If Haskell allowed arbitrary views of datatypes then this definition of test. If we were not specific about the type
could be handled much more nicely. Such a proposal would of the initial value a, Haskell would consider the declaration
not need to go so far as Wadler's views [36] (with their prob- ambiguous. We would like a way to parameterize which in-
lems of hidden computation) to be useful. stance is used without having a dummy value parameter.

8.3 The State Monad 8.6 Elaboration Monads

Haskell 's syntactic support for state is not a perfect fit. In One of the shortcomings of Hawk is that it has no explicit
particular, Haskell has no way to declare storage statically, notion of elaboration, separate from the semantics of the
although this is exactly what is required. In the register model. Elaboration is the process of translating a possibly
example, the array is allocated at the beginning, and nothing higher-order Hawk model into a first-order description, such
else is allocated afterwards. This reflects the fact that silicon as a netlist, or utilizing primitives of hardware description
cannot be allocated on the fly. Furthermore, when we come languages like VHDL or Verilog. This was not always the
to consider other interpretations of Hawk models, it would case. Initially, Hawk was similar to Lava [3] (in fact the
be useful to guarantee that the body of the state code did two languages started from a common block of definitions),

ntaffect the shape of the store, merely its contents. and used a monad of circuits to express circuit elaboration.
not Different implementations of the abstract monad would be
8.4 sin unafe~rfomIOused to generate net-lists for low level tools to manipulate,
8.4 sin unafe~rfomlOor logical formulae for input to a theorem prover, or simply

Probes often work quite well, but there are some glitches. execution for simulation and testing. To perform simulation,
While we have been careful to preserve the semantics of for example, the circuit monad is implemented simply as
Haskell in introducing probes, the semantics of probes are the identity monad, since all we have to do is glue together
not really preserved by Haskell. Due to lazy evaluation, functions. A richer version of simulation, however, could
there is nothing to ensure that probe output will appear in provide the machinery to allow the output of duplicated
the order expected. The output of a probe at clock tick 9 probes to be separated, so removing the problem with probes
might be put in the ifile before the output of a probe at clock that we outlined earlier.
tick 7. Another glitch arises because a given unit can be There were two reasons we departed from an explicit
used repeatediy within a microarchitectural model. If that monadic style. First, the presence of the monad made simple
unit has an embedded probe, the output of both uses of the function application tedious. We could live with this, or
probes will be merged in one file. This is not problematic for work around it. Much more serious, however, was the lack of
execution of the model (for probes cannot affect the models any syntactic help for mutual recursion between the results
themselves), but there is no way of identifying which output of monadic actions. The idiom of mutually recursive streams
is from which use of the probe. works so well for describing circuit feedback that we wanted

something similar for monadic computations. For example,
8.5 Symbolic Simulation restating the example of the counter in monadic form ought

to come out something like this:
Our drive. to make the entire Hawk library sufficiently counter ::Signal Bool -> Circuit (Signal Int)
polymorphic to perform symbolic evaluation has made us cutrrst=d
painfully aware of the shortcomings of Haskell's type class counter reset 0= do
system in describing abstract data types. Haskell's module { nex <- dlay 0+I inc
system can be used in a limited way to effect abstraction, ouit <- ift reset zeounet
as we have used for the signal type. This allows us to work;ou -iuretzront

around some of the problems with type classes, because we r etrnou<-lt 0
can completely reinterpret the meaning of symbols, bothreun ut
their types and their values. But Haskell's module system Unfortunately, a corresponding recursive do-form is not cur-
ls only intended as name space management, and is a poor rently available. We would like to see the do notation ex-
match when you intend to use abstract types instantiated at tended so that the bindings are mutually recursive, with the
many different types. Whether an ML-style module system recursion being defined by a user-supplied definition of an
would work better in this case is an interesting question. mf ix function:

The type class system at times works brilliantly. What
is perhaps most impressive is how well it has worked even mix ::Monad n => (a -> m a) -> in a
when we use it for tasks far beyond its original intended Note that, as the counter example shows, the obvious
use (simply as a system of overloading numeric and equality generic definition of nf ix as
types). However, the fit is not always perfect. One place
is the lack of explicit control over which instances are used nf ix f = do {z <- nf ix f
where. One of the neat aspects of symbolic evaluation is f Z}



is simply not appropriate. We want the looping to take from a previously executed instruction. Execution proceeds
place on the values manipulated by the monad, not on the as in the simplified example in Section 5. The register-file
effects the execution of the monad generates. Rather we first performs the write by updating its internal state on
need something with the behaviour of f ixST [23]. Finding an the basis of the destination register-name and value fields
appropriate axiomatization for md ix is the subject of current of the write-input. Then, it performs the read by filling in
research. the value fields for the source-operands of the transaction on

the read-input. The resulting transaction is placed on the
9 Hadae ler output. In this model, all this work is performed in a single

Algebraclock-cycle.
As promised, we close with a section describing how the Now consider bypasses, and the role they have in the
functional perspective gives us new insight into the structure specification of forwarding. The purpose of forwarding logic
of microarchitectures. in a pipeline is to ensure that results computed in later

Transformational laws are well known in digital hard- stages of the pipeline are available to earlier stages in time
ware, and form the basis of logic simplification and mini- to be used. Conceptually, the forwarding logic at each
mization, and of many retiming algorithms. Traditionally, pipeline stage examines its current instruction's source reg-
these laws occur at the gate level: de Morgan's law being a ister names to see if they match a later stage's destination
classic example. We were quite surprised when correspond- register name. For every matching source name, the corre-
ing laws started to emerge at the microarchitectural level! sponding value is replaced with the result value computed by

Perhaps we shouldn't have been surprised. After all, the later pipeline stage. Non-matching source operands con-
functional languages are especially good at expressing trans- tinue to use operand values given by the preceding pipeline
formational laws, and algebraic techniques have long been stage.
used in the relational hardware-description language Ruby This conceptual logic can be implemented concisely us-
[32]. Sizeable Ruby circuits have been successfully derived ing transactions. A bypass circuit has two inputs, each a
and verified through algebraic manipulation [16, 17]. Even signal of transactions. The first contains the input trans-
so, the Ruby research has emphasized circuits at the gate actions from the preceding pipeline stage, and the second
level and, a priori, there is no reason to think that large mi- is the control or update input, containing transactions from
croarchitectural components should satisfy any interesting later stages in the pipeline. At each clock cycle, the by-
algebraic laws: the components are constructed from thou- pas circuit compares the source names of the current in-
sands of individual gates, and boundary cases could easily put transaction with the destination names of the current
remove any uniformity that would have to exist for simple update-transaction. The output of the bypass is identical
laws to be present. Yet we have found that when microar- to the input, except that source operands matching the up-
chitectural units are presented in a particular way, many date's destination operand are updated.
powerful laws appear. Bypasses have many nice properties by themselves. Not

Before we consider one of the laws in some detail, note only are they time-invariant (delays can pass over them) but
first that we inherit for free the ground rule of referential they are idempotent in their second argument:
transparency or, in hardware terms, a circuit duplication ip.Vd.
law. Any circuit whose output is used in multiple places is byas upd.(yasudip =bps p n
equivalent to duplicating the circuit itself, and using each bps p bps p n)=bps p n
output once. Because Hawk is embedded in Haskell (and Most interesting, however, is their interaction with register
introduces no new features that would otherwise break ref- files, which can be expressed with the register-bypass law:
erential transparency), every circuit satisfies this law. That
is, it is impossible within Hawk for a specification of a com- Vread . Vwrite.
ponent to cause hidden side-effects observable to any other bypass write (reg (delay Nop write) read)=
component specification. Of course, in many specification reg write read
languages this law does not hold universally. For exam-
ple, duplicating a circuit that incremented a global variable In other words, we can delay writing a value into the register
on every clock cycle would cause the global variable to be file, so long as we also forward the write-value to the output,
incremented multiple times per clock period, breaking be- in case that register was being read on the same clock cycle.
havioral equivalence. Hawk circuits can still be stateful, but We use this law repeatedly to eliminate forwarding logic
all stateful behavior is forced to be local (the encapsulated when simplifying pipelines. Seen the other way around, this
state example) and/or expressed using feedback. law explains the origin of forwarding logic. -

Initially we considered the register-bypass law to be a
9.1 Register-Bypass Law theorem about register files, and accordingly we proved that

it held for a number of different implementations. However,
The law we will discuss in some detail is the register-bypass it is also tempting to view this law as an axiom of register
law. To do so, we need to discuss register files and bypasses files. In effect, by using the law repeatedly from right to
in more detail than we have up to now. left, we obtain a specification for how the register file must

Consider a transaction-based specification of a register behave for any time prefix.
file. This component has two input signals (for reading and
writing) and one output signal, each of which are signals 9.2 Transforming the Microarchitecture
of transactions. At each clock cycle, the read-input is ex-
pected to contain a transaction whose opcode and register Other laws of microarchitectural algebra include a hazard-
name fields have been set, but whose value fields are absent, bypass law, for transforming multi-cycle pipelines in the
whereas the write-input contains a completed transaction presence of data hazards, and projection laws, for express-

ing local properties of signals [25, 261. Here we note that



the laws we have discovered up to now are by themselves [10] ELLIOTT, C. An embedded modeling language apl-
sufficiently powerful to simplify a pipelined microarchitec- proach to interactive 3D and multimedia animation. To
ture that uses forwarding, branch speculation and pipeline appear in IEEE Transactions on Software Engineering
stalling for hazards. The resulting simplified pipeline is very (1999).
similar to the reference machine specification (i.e. no for-
warding logic), while still retaining cycle-accurate behavior [11] ELLIOTT, C., AND HUDAK, P. Functional reactive an-
with the original implementation pipeline. imation. In The International Conference on Func-

tional Programming (Amsterdam, The Netherlands,
June 1997).
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